(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
list(Cons(x, xs)) → list(xs)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x) → list(x)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
Cons0(0, 0) → 0
Nil0() → 0
True0() → 0
isEmpty[Match]0(0) → 0
False0() → 0
list0(0) → 1
notEmpty0(0) → 2
goal0(0) → 3
list1(0) → 1
True1() → 1
Nil1() → 4
isEmpty[Match]1(4) → 1
True1() → 2
False1() → 2
list1(0) → 3
True1() → 3
isEmpty[Match]1(4) → 3
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
list(Cons(z0, z1)) → list(z1)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → list(z0)
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
LIST(Nil) → c1
LIST(Nil) → c2
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
GOAL(z0) → c5(LIST(z0))
S tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
LIST(Nil) → c1
LIST(Nil) → c2
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
GOAL(z0) → c5(LIST(z0))
K tuples:none
Defined Rule Symbols:
list, notEmpty, goal
Defined Pair Symbols:
LIST, NOTEMPTY, GOAL
Compound Symbols:
c, c1, c2, c3, c4, c5
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0) → c5(LIST(z0))
Removed 4 trailing nodes:
NOTEMPTY(Nil) → c4
LIST(Nil) → c2
LIST(Nil) → c1
NOTEMPTY(Cons(z0, z1)) → c3
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
list(Cons(z0, z1)) → list(z1)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → list(z0)
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
S tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
K tuples:none
Defined Rule Symbols:
list, notEmpty, goal
Defined Pair Symbols:
LIST
Compound Symbols:
c
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
list(Cons(z0, z1)) → list(z1)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → list(z0)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
S tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
LIST
Compound Symbols:
c
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LIST(Cons(z0, z1)) → c(LIST(z1))
We considered the (Usable) Rules:none
And the Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [1] + x2
POL(LIST(x1)) = x1
POL(c(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
S tuples:none
K tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
Defined Rule Symbols:none
Defined Pair Symbols:
LIST
Compound Symbols:
c
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)